
Automated Acceptance Testing of High Capacity
Network Gateway

Ran Nyman1, Ismo Aro2, Roland Wagner3,

1,2,3 Nokia Siemens Network, PO Box 1
FI-02022 Nokia Siemens Networks

1ran@rannicon.com, 2 ismo.aro@nsn.com, 3 ro.wagner@gmx.net

Abstract. In this paper we will explore how agile acceptance testing is applied
in testing a high capacity network gateway. We will demonstrate how the
organisation managed to grow agile acceptance testing from two co-located
teams to 20+ multi-site team setup and how acceptance test driven development
is applied to complex network protocol testing. We will also cover how the
initial ideas that we had of agile acceptance testing evolved during product
development. At the end of paper we give recommendations to future projects
using agile acceptance testing based on feedback that we have collected from
our first customer trials.

Keywords: automated acceptance testing, scrum, organizational change

1 Introduction

At the end of 2007 we started having a discussion how to build a high capacity net-
work gateway from scratch. We faced two fundamental risks. First, the technology
was completely new and has never been used before in Nokia Siemens Networks.
Second, the use cases for first commercial deployments were not completely defined
at program start - It became clear that we need to adapt feature content heavily
throughout the program. Applying Scrum appeared to be the appropriate response to
these major risks.

The initial idea was to build broad band network gateway and after few months of
development we realized that there would more market demand for a gateway for
2G/3G and long term evolution (LTE) enabled mobile networks. Luckily we had cho-
sen agile methods to develop the product and these methods provide us the flexibility
to change the direction smoothly. The hardware (HW) and software (SW) platforms
we selected were totally new and in the beginning of the development they were not
available. So we used HW that had the target CPU but was totally different from the
ATCA blade architecture that we would use in commercial product. We used same
approach with the platform SW because the high availability SW platform was not
ready.

2 Organisation and growth

Selecting Scrum as agile development framework was easy; implementing it in prac-
tice was hard work. The first challenge was to convince all parties that feature teams
are better than component teams. The feature teams that we decided to use, after long
debate, are long-lived, cross functional teams which complete many end-to-end cus-
tomer features [1].

When we started the product we started with people coming from two totally dif -
ferent backgrounds. The first team had used Scrum over one year and successfully
created a product. The other team came from a traditional waterfall organisation that
had failed to apply Scrum and had resistance in trying it again. The failed Scrum
implementation was not real Scrum implementation it had just consisted of renaming
waterfall development to Scrum. So the approach that we used was to mix the teams
so both teams would have members from waterfall development background and
agile development background. We put all development people in a room and asked
them to organise themselves into two feature teams.

At first, the teams did not want to use feature teams because they claimed that the
feature teams lead to bad software quality. An Agile coach present in the meeting
asked gently what is the quality of the code that the component teams had created in
their previous project? The answer was that a mess. So after some discussion we
agreed to see how the code would end up when using feature teams. After the teams
agreed to try feature teams the forming of teams went very smoothly and it took under
one hour. The newly formed teams were allowed to select their Scrum masters from
two available Scrum masters.

We had our first teams and development could start. In the literature the recom-
mended approach is to start with one team and then grow when you have enough
infrastructure built [2]. We decided to start with two teams. This led to huge argu-
ments between teams and very slow start in development because there were so many
different opinions how the architecture and infrastructure should be done. In the
beginning there were difficulties in planning, because in a sequential life cycle model
there is a long planning and specification period. Jumping into agile style where only
minimum amount of work is planned was hard for people who did not have agile
development background.

2.2 Growing first wave

The first growth point was to add two more teams. It was a challenge since they were
transferred from traditional organisation. One of these teams refused to learn new
testing tools and new way of working. They did not produce anything that could be
considered done for several sprints in row. The team argued that the testing tools in
their previous environment were much better and resisted the learning of new tools
and did not want to write unit test. In retrospect one crucial point that caused the res-
istance was that we did not provide the sufficient training and the reasoning why
things are done differently when using iterative development. Also the new teams

should be able to influence the ways of working that have been agreed so they can
feel the rules as their own.

The only good thing in adding new team without breaking existing teams was that
the velocities of the existing teams did not suffer any significant impact because of
the new teams. We added still few more team to our main development site and
adding them did not cause so much troubles as adding the first two teams.

2.3 Growing second wave

Adding teams to the same site was easy compared to next step where we decided to
add teams at a second site to speed up development because the market demand for
the product that we were creating was suddenly emerging. Here we found out that
using iterative development and automated acceptance testing really paid of. We
trained the subcontractor in our ways of working by having them spend several weeks
with our local team doing work as team members until we were confident that they
could work by themselves..

The same coding and testing rules were applied to subcontractor that were for our
own teams. They had to write unit test, create automated acceptance test for all code
and use the central continuous integration system. The biggest challenge in working
with second site was the distance. It was hard to communicate the requirements and in
the first half a year we had one person working as product owner proxy for other site
to reduce the misunderstandings in requirements.

2.4 Current team structure

After adding several teams we have now over 20 teams and the majority of the teams
are developing and documenting features. We have couple of teams in supporting
roles like performance testing, system testing, coaching and continuous integration
(CI) team. CI team is taking care of building and automation system. The system test-
ing team is focusing on executing test that can not be done by Scrum teams because
the need of the real network elements which we have only a limited amount and
coordinating the usage of them between several teams is not feasible. The coaching
teams main responsibility is to support in modern engineering practices, help teams to
solve difficult technical challenges and in general help the organisation to learn faster.

2.5 Expert Coaching

In the beginning we realised that we need expert coaches that can help us in using
modern SW development practices. First we had two consultants who helped us to set
up the CI environment that was not so straight forward because the building and
installing the build to target HW was complicated. To get the first teams in speed with

unit testing and test driven development (TDD) we used one world class consultant
helping in setting up the unit testing framework and teaching teams how to test drive
their code. TDD was not widely accepted in teams but unit testing was found useful
by the teams. We used also help in teaching people acceptance test driven develop-
ment that helped the teams to understand the concept.

3 Test Automation Strategy

It was clear in the beginning that we did not want to write legacy code that has no test
as legacy code is defined in [3]. So we decided to have unit test coverage target and
our aim was to automate all acceptance tests. We are now in situation where all user
stories are unit tested, acceptance tested automatically and exploratory testing is done
based on agreement with the area product owner. This has led to situation where
almost all testing is done automatically and any manual testing done by teams is an
exception.

3.1 Regression tests

Regression tests consists of unit tests, smoke test and all automated test. For every
commit unit and smoke tests are executed and if those test cases fails, commits to
code base are not allowed until problem has solved. During night time we execute
whole regression set that contains all acceptance tests. The regression set consists of
all automated test cases that we have developed. As defined in [4] there is no cost in
adding all automated test in regression set and test from regression set should be
removed only if the functionality they test becomes obsolete. There is agreement with
product owner and teams that all acceptance test cases should be passing at the end of
the sprint.

3.2 Acceptance test driven development (ATDD)

The idea of ATDD [5] was already known to some of the people and they had also
experience in applying it in product development. The idea of ATDD came from
Robot Framework [6] developers Pekka Klärck, Juha Rantanen and Janne Härkönen.
The basic idea is to acceptance test every requirement which comes into the sprint and
at that the moment acceptance tests are discussed for the first time and planned at a
high level. The initial idea in ATDD was to have ATDD-meeting after each sprint
planning where test cases are clarified and agreed how they will be implemented.
Currently ATDD practices vary team by team but only acceptance tested require-
ments are considered as done.

3.3 Structure of test cases

In the previous project where we piloted Scrum, we started writing test cases at a very
technical level and it was extremely hard to understand what test cases were doing
without deep domain and tool knowledge. Then we found out that this approach was
not working and started writing tests in business language. This was our experience
and we wanted to try the same approach in this project, but there was huge resistance
to create higher level language to test cases. Reasoning was that it does not give any
value and also the way of how we use protocol tester does not support this kind of
step by step presentation. One more reason for dropping this more readable way of
writing test cases is that our test cases usually don't test any end to end functionality
that has business value (see conclusions) and they are not read by product owner and
area product owners.

4 Test Automation and Continuous Integration (CI)

There were two options what to use as testing framework when we started the devel-
opment. HIT which is an in house test scripting tool and Robot Framework. There
was not any formal decision by anyone and two initial teams started using Robot
Framework because its usage was much simpler than HIT and it was easily integrated
to CI environment. After it was already in use it was decided that it would be the test-
ing framework for this product. Robot Framework is a generic keyword driven [7]
testing framework so we also needed protocol tester.

Catapult [8] was chosen because there was no previous experience of acceptance
testing this kind of product and Catapult was used successfully in previous, non Agile
developed products as a protocol tester. The Robot framework is executing long cata-
pult scripts. There has been now discussion of changing way of using catapult or even
replace it, because how we are using it at the moment does not support ATDD.

In Figure 1 is our initial testing environment and in Figure 2 is the current environ-
ment. Currently we have switched most of the builds from Bamboo CI system [9] to
Build Bot [10] system. Builbot executes build, which includes compiling and unit
testing. Builbot executes also our sanity tests. Sanity tests represent smoke testing
[11]. Buildbot is executing Robot Framework where those sanity test are. At the mo-
ment we have three different sanity builds, one for our Robot Framework test
material, one for product code and one for catapult. When there is change in one these
diffrened parts only that sanity is executed. Sanitys are executed in series, so only one
commit is tested in one sanity run. There is dedicated environment for sanity testing.

4.1 Continuous Integration Practices

Teams are using their own development environments to test pre commit changes to
avoid breaking builds on CI. This practice is crucial since we have so many teams and

having each team to commit to trunk without first verifying the change would lead to
situation where the build would all the time broken and the cause of failure would be
hard to find. When we had fewer teams we committed directly to trunk and let the CI
system to inform possible problems but we had to modify the practice when we grew
bigger than 10 teams. In Figure 3 we can see the daily build success rates that we
have currently and the number of failing test cases in case the build fails (black bar in
picture).

Fig. 1. Initial CI System
Fig. 2. Current CI System

Fig. 3. Build status (gray is successful build) and failed test cases per build

5 Analysis of achieved results

Having unit test coverage as target backfired and we found out that people were writ-
ing unit test just to get the coverage but not testing anything. Having targets seems to
backfire as described in [12]. We decided to remove the unit test target and to our sur-
prise the unit test coverage did not drop significantly. Our current branch coverage is
75% and the mandatory target was previously 80%. It seems that we should have
focused on training people when they joined our product development instead of hav-
ing targets on unit test coverage. The first two teams who received unit testing train-
ing did not have time or necessary skills to train new teams when they joined and it
lead to unit testing that was not meaningful.

Having automated acceptance test was one of the key success criteria why we
managed to grow the development to multi site and still to maintain the high quality
of the code base. The growing regression set is seen in Figure 4.

Fig. 4. Regression set growth

The moment of truth for our product came when we had our first customer trial. Even
the huge amount of acceptance testing did not save us from missing functionality that
the customer noticed in their trial in their own environment. The analysis of the faults
and missing functionality revealed to us that we must have end to end acceptance test
cases written on higher level so that they test the customer functionality and that we
should have the same network elements that the customers have. Many of the findings
in customer trial were incompatibilities with the customer elements because we had
different interpretation about the specification than the other network element vendor.
When we fixed the findings in customer trial we created new test case that we can be
sure that the functionality that we create will also work with future modifications.

We tried to patch our lack of end to end test by having separate system verification
team but even they were not able to find the missing parts of the functionality due to
two reasons. They were not collaborating with the teams developing the functionality
close enough so they would have clear picture what to test and they also lacked HW
that the customer had.

We also found out that the feature teams that we created in the beginning were
turned to functionality area teams and were not able to create end to end functionality
inside one team. The functionality areas that we have are interfaces towards other sys-
tem facing our gateway product. It seems that the product that we create is so big that
one team can not handle the incoming and out going interface so they would conform
to feature team definition that was our goal. Now when we have most of the interfaces
in working shape we will try again to move more towards feature teams.

6 Conclusions

The selection of Scrum and agile development methods significantly accelerated the
time to market and gave us flexibility that our traditional development methods never
offered. The previous gateway product where we used sequential life cycle model
took twice as long to develop and the sequential life cycle would not have allowed us
to change direction of the product development as fast as agile methods. Automated
acceptance testing helped us significantly when we added new teams to development
to keep the code base in high quality.

One easy thing that were we should have put more effort was the speed and relia-
bility of the CI system as the feedback speed from each code change should be as fast
as possible as mentioned in [13]. Also the CI system should have been planned more
carefully as it did not sustain the adding of new teams as easily as we thought.

On testing side we should have had more focus on exploratory testing. We were
too excited about 100% automated testing and only automated testing. It came obvi-
ous after the first customer trials that we need to amplify the usage of exploratory
testing [14] in teams to ensure product quality.

We also found out that splitting user stories to very small parts so they could fit in
the one sprint leads to situation that testing is done at very low level. That makes
problematic to have really end to end test cases which give real business value. We
should bring acceptance testing more closer to customer, and use acceptance tests as a
communication tool between all stakeholders [4], from customer to the developers
and testers. This would also give us better visibility what functionality is ready ship
and what not.

There is also one other big reason to have these upper level acceptance test cases:
these test cases, these test cases should verify that nothing has lost because of splitting
requirements and also ensure that no information has been lost in communication
between different stakeholders. Having system verification team to patch the lack of
exploratory testing and missing high level test cases is not a solution that works due
to communication challenges between teams.

References

1. Larman C., Vodde B.: Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum. Addison-Wesley, Boston (2009)

2. Schwaber K.,Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
3. Feathers M.C.: Working Effectively with Legacy Code. Prentice Hall PTR, New Jersey

(2005)
4. Adzic G.: Bridging the Communication Gap. Neuri Limited, London (2009)
5. http://testobsessed.com/wordpress/wp-content/uploads/2008/12/atddexample.pdf
6. http://robotframework.org
7. http://en.wikipedia.org/wiki/Keyword-driven_testing
8. http://www.ixiacom.com/products/display?skey=ixcatapult
9. http://www.atlassian.com/software/bamboo/

10.http://buildbot.net/trac
11.http://en.wikipedia.org/wiki/Smoke_testing#Smoke_testing_in_software_development
12.Austin R.D.: Measuring and Managing Performance in Organizations. Dorset House

Publishing, New York (1996)
13.http://www.martinfowler.com/articles/continuousIntegration.html#KeepTheBuildFast
14.http://en.wikipedia.org/wiki/Exploratory_testing

